Time : 3 hours

Instructions :

- 1. Answer all questions.
- 2. Write your answers according to the instructions given below with the questions.
- 3. Begin each section on a new page.

SECTION - A

- Given below are 1 to 15 multiple choice questions. Each carries one mark. Write the serial number (a or b or c or d) in your answer book of the alternative which you feel is the correct answer of the question.
- 1. Find the angle between the lines x = 3 and y = 5.

(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{4}$

- 2. If the lines 5x Ky 7 = 0 and 2x + 3y + 5 = 0 are mutually perpendicular, then the value of K = ?
 - (a) $-\frac{10}{3}$ (b) $\frac{10}{3}$ (c) $-\frac{15}{2}$ (d) $\frac{15}{2}$
- 3. How many tangents can be drawn from the origin (0, 0) to the curve $x^2 + y^2 = 25$? (a) 1 (b) 0 (c) 2 (d) 1 or 2
- 4. If $x^2 = -16y$, then find the equation of the tangent which is perpendicular to Y axis. (a) x = 0 (b) y = 0 (c) x = 4 (d) x = -4
- 5. Find the direction cosines of the vector 2i + 2j + k. (a) $\frac{2}{3}$, $\frac{2}{3}$, $\frac{1}{3}$ (b) -2, 2, 1 (c) $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ (d) 1, 1, 1
- 6. Find the eccentricity of hyperbola $3x^2 12y^2 = 36$. (a) $\frac{3}{4}$ (b) $-\frac{3}{4}$ (c) $-\frac{\sqrt{5}}{\sqrt{2}}$ (d) $\frac{\sqrt{5}}{2}$
- 7. Find the projection of vector (1, 1) on the direction (3, 4). (a) $\frac{7}{5}$ (1, 1) (b) $\frac{7}{5}$ (3, 4) (c) $\frac{7}{25}$ (d) none of these
- 8. Find the rate of change of volume of a sphere having radius r with respect to its surface area.
 - (a) r (b) 4r (c) $\frac{r}{2}$ (d) $\frac{r}{3}$

Time : 3 hours

9. Find the centre of the sphere $|r^2| - r \cdot (2, 1, 3) - 2 = 0$. (a) (-4, -2, -6) (b) $\left(1, \frac{1}{2}, \frac{3}{2}\right)$ (c) (2, 1, 3) (d) (0, 0, 0)

10.
$$\lim_{x \to \infty} \frac{\sin\left[\tan\left(\sin\frac{5x}{6}\right)\right]}{x} = ?$$
(a) $\frac{6}{5}$ (b) $\frac{5}{6}$ (c) 1 (d) none of these

11.
$$\frac{d}{dx}\left|x - \frac{x^2}{2!}\right| + \frac{d}{dx}\left|(x + 1) - \frac{2x^3}{3!}\right| = ?(x \neq -1)$$

(a) 1 + x (b) 1 - x² (c) (1 + x)⁻¹ (d) none of these

12.
$$\int \sin x \cdot e^{\cos x} dx = \dots$$

(a) $e^{\cos x} + c$ (b) $e^{\sin x} + c$ (c) $-e^{\cos x} + c$ (d) none of these

13.
$$\int_{-1}^{1} \log \left(\frac{2 - x}{2 + x} \right) dx = \dots$$
(a) 1 (b) 0 (c) 2 (d) -2

14. Find the order and degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^2 + 3\left(\frac{dy}{dx}\right)^3 + 4 = 0$. (a) 2, 2 (b) 1, 3 (c) 3, 1 (d) 2, 3

15. Find the perpendicular distance from P (4, -5, 3) to r = (5, -2, 6) + K (3, -4, 5), $K \in R$.

(a)
$$\frac{\sqrt{547}}{5}$$
 (b) $\sqrt{\frac{457}{36}}$ (c) $\sqrt{\frac{457}{25}}$ (d) $\frac{\sqrt{547}}{6}$
SECTION B

- Answer the following 16 to 30 questions. Each question carries one mark. 15
- 16. If a, b, $c \in R$ and if a + b + c = 0, prove that the lines ax + by + c = 0 pass through a fixed point ($a^2 + b^2 \neq 0$). Also find that point.
- 17. Obtain the equation of a circle touching both axes and having its centre at (4, -3).

- 18. Show that for every value t, the point $\left(\frac{a(1-t^2)}{1+t^2}, \frac{2bt}{1+t^2}\right)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$
- 19. Find the projection of vector i on the direction of vector j.
- 20. If a particle moves from origin to (1, 1, 1) by application of forces (4, 1, -3) and (3, 1, -1), then find the work done.
- 21. Find the normal of a plane x + 2y + 3z = 6.
- 22. Find the sphere for which (1, 1, 2) and (2, 2, 1) are the extremities of its diameter.
- 23. Change N(-2, 1) into the modulus form.
- 24. If $x^2 + y^2 = a^2$, then find $\frac{dy}{dx}$. Find $\frac{d}{dx}(m\cos^{-1}x)$.
- 25. If $f'(x) = \sqrt{x^2 + 7}$, $\forall x \in R$ and f(3) = 5, then find the approximate value of f(3.01).
- 26. Find $\int \frac{(2x + 1)^2}{x^2} dx$. 27. Evaluate $\int_{0}^{\frac{\pi}{4}} \sec x dx$.
- 28. Find the area of the region bounded by the curve xy = 16, X axis and lines x = 4 and x = 8.
- 29. Find the differential equation of the curve $x^2 + y^2 = a^2$.

30. Get the equation of the tangent at (7, 7) to the parabola $y^2 = 7x$. OR Get the tangent to $y^2 = 12x$ at the point t = 2. Also find the point of contact.

SECTION C

- Answer the following 31 to 40 questions as directed. Each question carries two marks.
- 31. Prove that (2a, 4a), (2a, 6a) and (2a + √3 a, 5a) are the vertices of an equilateral triangle. (a ≠ 0).
 OR
 O is (0, 0) and A is (-2, -3). Find the equation of the locus of P(x, y), if OP : AP = 5:3.
- 32. Find the equations of tangents to $y^2 = 4ax$ that makes an angle of measure $\frac{\pi}{3}$ with X axis.
- 33. Find the tangents to the ellipse $3x^2 + 4y^2 = 12$ that are parallel to the line 3x + y 2 = 0.
- 34. Obtain the equation of the hyperbola passing through (5, -2) having length of transverse axis equal to 7.

OR

Find the measure of angle between the asymptotes of $3x^2 - 2y^2 = 1$.

35. If \overline{x} and \overline{y} are unit vectors and $\overline{x} \cdot \overline{y} = 0$, then prove that $|\overline{x} + \overline{y}| = \sqrt{2}$.

36. Find the volume of the tetrahedron V - ABC, if V is (3, 2, -4), A is (4, 3, 3), B is (3, 2, 1) and C is (1, 2, -1).

OR

Find the area of \triangle ABC, given that A, B, C are (1, 2, 1), (1, 3, 1) and (3, 4, 5) respectively.

37. Find $\lim_{h \to 0} \left[\frac{1}{\sqrt[3]{ah^3 + h^4}} - \frac{1}{\sqrt[3]{ah^3}} \right].$

38. If y = $\tan^{-1} \frac{5x}{1 - 6x^2}$, then find $\frac{dy}{dx}$.

OR

Differentiate $\tan^{-1} \frac{2x}{1-x^2}$ with respect to $\cos^{-1} \frac{1-x^2}{1+x^2}$, where 0 < x < 1.

39. Prove that of all the rectangles having the same area, the square has minimum perimeter.

40. Evaluate $\int \sin^3 (2x + 1) dx$.

SECTION D

- Answer the following 41 to 50 questions as directed. Each question carries 3 marks. 30
- 41. Find the fourth vertex of a parallelogram if the other three vertices are (1, 2), (-2, 3) and (3, -1).
- 42. Get the equation of the circle passing through (1, 0), (0, -6) and (3, 4).

OR

If circles $x^2 + y^2 + 2gx + a^2 = 0$ and $x^2 + y^2 + 2fy + a^2 = 0$ touch each other externally, prove that $g^{-2} + f^2 = a^{-2}$.

43. If (a, 1, 1), (1, b, 1) and (1, 1, c) are co-planar, prove that $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$.

44. Prove that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{2} = z$ intersect and find the point of intersection.

Find the point of intersection of the lines r = (1, 1, -1) + K(3, -1, 0) and $r = (4, 0, -1) + K(2, 0, 3), k \in R$.

45. Get the equation of the plane through (1, 2, 3) and (3, -1, 2) and perpendicular to the plane x + 3y + 2z = 7.

OR

Get the equation of the plane through (1, 2, -1) and perpendicular to the line $\frac{x-1}{3} = \frac{y-2}{1} = \frac{z-3}{2}$.

46. Divide 64 into two parts such that the sum of their cubes is minimum.

47. Evaluate
$$\int_{0}^{\frac{\pi}{2}} x^2 \cos 2x \, dx$$
.

- 48. Find the area of a region bounded by the curves $y = 1 x^2$ and $y = x^2 1$.
- 49. A particle moves with constant acceleration and distance traveled by a particle during 10th and 12th second is 600 m and 720 m respectively. Find the initial velocity of the particle.
- 50. Solve $\cos(x y) dy = dx$.

- Answer the following 51 to 54 questions. Each question carries 5 marks. 20
- 51. A is (1, 3) in \triangle ABC and the lines x 2y + 1 = 0 and y 1 = 0 contain two of the medians of the triangle. Find the co-ordinates of B and C.

52. Find $\lim_{x \to 0} \frac{(1 + mx)^n - (1 + nx)^m}{x^2}$, m, n $\in \mathbb{N}$.

OR

If f (x) = $\begin{cases} 3x + 1, & x < 3 \\ Kx - 26, & 3 < x < 5 \\ x^2 + a, & x \ge 5 \end{cases}$ is continuous, then find K and a.

53. If $x\sqrt{1-y^2} + y\sqrt{1-x^2} = a$ and |x| < 1 and |y| < 1, then find $\frac{dy}{dx}$.

54. Evaluate : $\int \frac{\sin x}{\sqrt{1 + \sin x}} dx$, $x \in (0, \pi)$ OR Evaluate : $\int \frac{dx}{\sin x + \sec x}$.

