23 - ATOMS, MOLECULES AND NUCLEI (Answers at the end of all questions)

Page 1

1) If the radius of the ${}_{13}AI^{27}$ nucleus is estimated to be 3.6 fermi, then the radius of ${}_{52}Te^{125}$ nucleus will be nearly (c) 5 fermi (d) 4 fermi (a) 8 fermi (b) 6 fermi [AIEEE 2005] 2) Starting with a sample of pure Cu^{66} , 7/8th of it decays into Zn in 15 minutes. The corresponding half-life is (a) 15 minutes (b) 10 minutes (c) 7.5 minutes (d) 5 minutes [AIEEE 2005] 3) The diagram shows the energy levels for an electron n = 4in a certain atom. Which transition shown represents the emission of a photon with the most energy n =3 (a) IV (b) III (C) II (d) I n = 2 [AIEEE 2005] _ n = 1 III ΙΠ 1V A nuclear transformation is denoted by X (n, α) ₃Li⁷. Which of the following is the 4) nucleus of element X? (b)₆C¹² (a) ₅B¹⁰ $(c) _{4}Be^{11}$ $(d) _{5}B^{9}$ [AIEEE 2005] 5) If the kinetic energy of a free electron doubles, its de-Broglie wavelength changes by the factor (a) 2 (b) 1/2 (c) √2 (d) 1/√2 [AIEEE 2005] 6) A nucleus disintegrates into two nuclear parts which have their velocities in the ratio 2:1. The ratio of their nuclear sizes will be (c) $3^{\frac{1}{2}}:1$ (d) $1:2^{\frac{1}{3}}$ (b) 1:3² (a) $2^{\overline{3}}$: 1 [AIEEE 20041 7) The binding energy per nucleon of deuteron $({}_{1}H^{2})$ and helium nucleus $({}_{2}He^{4})$ is 1.1 MeV and 7 MeV respectively. If two deuteron nuclei reacts to form a single helium nucleus, then the energy released is (c) 23.6 MeV (d) 19.2 MeV (a) 13.9 MeV (b) 26.9 MeV [AIEEE 2004] 8) An α - particle of energy 5 MeV is scattered through 180° by a fixed uranium nucleus. The distance of the closest approach is of the order of (b) 10^{-10} cm (c) 10^{-12} cm (d) 10^{-15} cm (a) 1 A° [AIEEE 2004] 9) When U²³⁸ nucleus originally at rest, decays by emitting an alpha particle having speed 'u', the recoil speed of the residual nucleus is 4u 238 $(a) - \frac{4u}{238}$ $(c) - \frac{4u}{234}$ (d) 4u (b) [AIEEE 2003] 10) A nucleus with Z = 92 emits the following in a sequence α , α , α , α , α , β , β , β , α , β^{\dagger} , α . The Z of the resulting nucleus is (d) 82 (a) 74 (b) 76 (c) 78 [AIEEE 2003]

www.schoolnotes4u.com

(Answers at the end of all questions)

11) If the radioactive decay constant of radium is 1.07×10^{-4} per year, then the half-life period is approximately equal to (c) 6500 yrs. (d) 5000 years [AIEEE 2003] (a) 8900 yrs. (b) 7000 yrs. 12) Which of the following cannot be emitted by radioactive substances during their decay? (a) electrons (b) protons (c) neutrinos (d) helium nuclei [AIEEE 2003] 13) Which of the following atoms has the lowest ionization potential? (b) $_{7}N^{14}$ (c) $_{55}Cs^{123}$ (d) $_{18}Ar^{14}$ (a) ₈0¹⁶ [AIEEE 2003] 14) If the binding energy of the electron in a hydrogen atom is 13.6 eV, the energy required to remove the electron from the first excited state of Li⁺⁺ is (a) 122.4 eV (b) 30.6 eV (c) 13.6 eV (d) 3.4 eV [AIEEE 2003] 15) The wavelengths involved in the spectrum of deuterium $({}_{1}D^{2})$ are slightly different from that of hydrogen spectrum, because (a) size of the two nuclei are different (b) masses of the two nuclei are different (c) nuclear forces are different in the two cases (d) attraction between the electrons and the nucleus is different in two cases [AIEEE 2003] 16) In the nuclear fusion reaction, ${}_{1}H^{2} + {}_{1}H^{3} \rightarrow {}_{2}He^{4} + n$, given that the repulsive potential energy between the two nuclei is $\sim 7.7 \times 10^{-14}$ J, the temperature at which the gases must be heated to initiate the reaction is nearly [Boltzmann's constant $k = 1.38 \times 10^{-23} \text{ J/K}$] (a) 10^9 K (b) 10^7 K (c) 10^5 K (d) 10^3 K [AIEEE 2003] 17) If the second Bohr's radius of hydrogen atom is $4a_0$, then the radius of the fifth Bohr's orbit in hydrogen atom is $(a) 5a_0$ (b) 10a₀ (c) 20a₀ (d) 25a₀ [AIEEE 2002] 18) An electron changes its position from n = 2 to the orbit n = 4 of an atom. The wavelength of the emitted radiations is (R = Rydberg's constant)(c) $\frac{16}{5R}$ (d) $\frac{16}{7R}$ (a) $\frac{16}{R}$ 16 3R (b) [AIEEE 2002] 19) Hubble's law is based on the (a) Wein's law (b) Stefan's law (c) Doppler's effect (d) Law of gravitation [AIEEE 2002] 20) A radioactive sample at any instant has its disintegration rate of 5000 disintegrations per minute. After 5 minutes, the rate is 1250 disintegrations per minute. The decay constant per minute is (a) 0.8 ln 2 (b) 0.4 ln 2 (c) 0.2 ln 2 (d) 0.1 ln 2 [AIEEE 2002] 21) If the wavelength K_{α} of Z = 11 atom is λ , then the atomic number of atom whose K_{α} radiation wavelength is 4λ will be [IIT 2005] (C) 6 (a) 44 (b) 11 (d) 5

Page 2

(Answers at the end of all questions)

- If the star can convert all the He nuclei completely into oxygen nuclei, the energy released per oxygen nucleus is (Mass of He nucleus is 4.0026 amu and mass of oxygen nucleus is 15.9994 amu)
 (a) 7.6 MeV
 (b) 56.12 MeV
 (c) 10.24 MeV
 (d) 23.9 MeV
 [IIT 2005]
- 23) A photon of energy 10.2 eV collides inelastically with stationary hydrogen atom in its ground state and after a few micro-second, another photon of energy 15 eV collides with the hydrogen atom inelastically. Then a detector detects
 - (a) one 10.2 eV photon and one 1.4 eV electron
 - (b) one 3.4 eV photon and one 1.4 eV electron
 - (c) two photons of 10.2 eV energy (d) two electrons of 1.4 eV energy [IIT 2005]
- 24) After 280 days, the activity of a radioactive sample is 6000 dps. The activity reduces to 3000 dps after another 140 days. The initial activity of the sample in dps is (a) 6000 (b) 9000 (c) 3000 (d) 24000 [IIT 2004]

25) The electric potential between a proton and an electron is given by $V = V_0 I \ln (r / r_0)$, where r_0 is a constant. Assuming Bohr's model to be applicable, write variation of r_n with n, n being the principal quantum number. (a) $r_n \propto n$ (b) $r_n \propto 1/n$ (c) $r_n \propto n^2$ (d) $r_n \propto 1/n^2$ [IIT 2003]

- 26) For uranium nucleus, how does its mass vary with volume? (a) $m \propto V$ (b) $m \propto 1/V$ (c) $m \propto \sqrt{V}$ (d) $m \propto V^2$ [IIT 2003]
- 27) If the atom $_{100}$ Fm²⁵⁷ follows the Bohr model and the radius of $_{100}$ Fm²⁵⁷ is n times the Bohr radius, then find n. (a) 100 (b) 200 (c) 4 (d) 1/4 [IIT 2003]
- 28) A nucleus with mass number 220 initially at rest emits an α particle. If the Q value of the reaction is 5.5 MeV, calculate the kinetic energy of the α particle. (a) 4.4 MeV (b) 5.4 MeV (c) 5.6 MeV (d) 6.5 MeV [IIT 2003]
- 29) A hydrogen atom and a Li⁺⁺ ion are both in the second excited state. If I_H and I_{Li} are their respective angular momenta and E_H and E_{Li} are their respective energies, then (a) $l_H > l_{Li}$ and $|E_H| > |E_{Li}|$ (b) $l_H = l_{Li}$ and $|E_H| < |E_{Li}|$ (c) $l_H = l_{Li}$ and $|E_H| > |E_{Li}|$ (d) $l_H < l_{Li}$ and $|E_H| < |E_{Li}|$ [IIT 2002]
- 30) The half-life of 215 At is 100 μ s. The time taken for the radioactivity of a sample of 215 At to decay to 1 / 16th of its initial value is (a) 400 μ s (b) 6.3 μ s (c) 40 μ s (d) 300 μ s [IIT 2002]
- 31) Which of the following processes represents a γ decay?

(a)
$${}^{A}X_{z} + \gamma \rightarrow {}^{A}X_{z.1} + a + b$$
 (b) ${}^{A}X_{z} + {}^{1}n_{0} \rightarrow {}^{A-3}X_{z.2} + c$
(c) ${}^{A}X_{z} \rightarrow {}^{A}X_{z} + f$ (d) ${}^{A}X_{z} + e_{.1} \rightarrow {}^{A}X_{z.1} + c$
[IIT 2002]

- 32) The electron emitted in beta radiation originate from
 - (a) inner orbits of atoms (b) free electrons existing in nuclei
 - (c) decay of a neutron in a nucleus (d) proton escaping from the nucleus

[IIT 2001]

www.schoolnotes4u.com

(Answers at the end of all questions)

33) A radioactive sample consists of two distinct species having equal number of atoms initially. The mean life of one species is τ and that of the other is 5τ . The decay products in both cases are stable. A plot is made of the total number of radioactive nuclei as a function of time. Which of the following figures best represents the form of this plot?

- 34) The transition from the state n = 4 to n = 3 in a hydrogen like atom results in ultraviolet radiation. Infrared radiation will be obtained in the transition (a) $2 \rightarrow 1$ (b) $3 \rightarrow 2$ (c) $4 \rightarrow 2$ (d) $5 \rightarrow 4$ [IIT 2001]
- 35) Electrons with energy 80 keV are incident on the tungsten target of an X-ray tube. K-shell electrons of tungsten have - 72.5 keV energy. X-rays emitted by the tube contain only
 - (a) a continuous X-ray spectrum (Bremsstrahlung) with a minimum wavelength of $\sim 155 \text{ A}^{\circ}$
 - (b) a continuous X-ray spectrum (Bremsstrahlung) with all wavelengths.
 - (c) the characteristic X-ray spectrum of tungsten
 - (d) a continuous X-ray spectrum (Bremsstrahlung) with a minimum wavelength of ~155 A° and the characteristic X-ray spectrum of tungsten [IIT 2000]
- 36) Imagine an atom made up of proton and a hypothetical particle of double the mass of the electron but having the same charge as the electron. Apply the Bohr atom model and consider all possible transitions of this hypothetical particle to the first excited level. The longest wavelength photon that will be emitted has wavelength λ (given in terms of the Rydberg constant R for the hydrogen atom) equal to (a) 9/(5R) (b) 36/(5R) (c) 18/(5R) (d) 4/R [IIT 2000]
- 37) Binding energy per nucleon Vs mass number curve for nuclei is shown in figure. W, X, Y and Z are four nuclei indicated on the curve. The process that would release energy is:
 - (a) $Y \rightarrow 2Z$
 - (b) $W \rightarrow X + Z$
 - (c) $W \rightarrow 2Y$

 $(d) X \rightarrow Y + Z$

23 - ATOMS, MOLECULES AND NUCLEI (Answers at the end of all questions)

- 38) Two radioactive materials X₁ and X₂ have decay constants 10 λ and λ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of X_1 to that of X_2 will be 1/e after a time (a) $1/10 \lambda$ (b) 1/10λ (c) 11/10λ (d) 1/9λ [IIT 2000]
- 39) The electron in a hydrogen atom makes a transition from an excited state to the ground state. Which of the following statements is true?
 - (a) Its kinetic energy increases and its potential and total energy decreases.
 - (b) Its kinetic energy decreases, potential energy increases and its total energy remains the same.
 - (c) Its kinetic and total energy decreases and its potential energy increases.
 - [IIT 2000] (d) Its kinetic, potential and total energy decreases.
- 40) Order of magnitude of density of uranium nucleus is $(m_p = 1.67 \times 10^{-27} \text{ kg})$ (a) 10^{20} kg/m^3 (b) 0^{17} kg/m^3 (c) 10^{14} kg/m^3 (d) 10^{110} kg/m^3 [IIT 1999]
- 41) ^{22}Ne nucleus, after absorbing energy, decays into two $\alpha\text{-particles}$ and an unknown nucleus. The unknown nucleus is (b) carbon (c) boron (a) nitrogen (d) oxygen [IIT 1999]
- 42) The half-life period of a rdaioactive element X is same as the mean life time of another radioactive element Y. Initially both of them have the same number of atoms. Then
 - (a) X and Y have the same decay rate initially
 - (b) X and Y decay at the same rate always
 - (c) Y will decay at a faster ate than X
 - (d) X will decay at a faster rate than Y [IIT 1999]
- 43) Which of the following is a correct statement?
 - (a) Beta rays are same as cathode rays
 - (b) Gamma rays are high energy neutrons
 - (c) alpha particles are singly ionized helium atoms
 - (d) Protons and neutrons have exactly the same mass [IIT 1999]
- 44) Let m_p be the mass of proton, m_n the mass of neutron, M₁ the mass of $\frac{20}{10}$ Ne nucleus and M $_2$ the mass of $\frac{40}{20}$ Ca nucleus. Then $(a) M_2 = 2M_1$ $(b) M_2 > 2M_1$ $(c) M_2 < 2M_1$ $(d) M_1 < 10 (m_n + m_p)$ [IIT 1998]
- 45) The electron in a hydrogen atom makes a transition $n_1 \rightarrow n_2$ where n_1 and n_2 are the principal quantum numbers of two states. Assume the Bohr model to be valid. The time period of the electron in the initial state is eight times that in the final state. The possible values of n_1 and n_1 are
 - (a) $n_1 = 4$, $n_2 = 2$ b) $n_1 = 8$, $n_2 = 2$ (c) $n_1 = 8$, $n_2 = 1$ (d) $n_1 = 6$, $n_2 = 3$ [IIT 1998]
- 46) The half life of ${}^{131}I$ is 8 days. Given a sample of ${}^{131}I$ at time t = 0, we can assert that
 - (a) no nucleus will decay before t = 4 days
 - (b) no nucleus will decay before t = 8 days
 - (c) all nuclei will decay before t = 16 days
 - T UT 4000 1 (d) a given nucleus may decay at any time after t = 0

L	 I	1	9	9	8	1

www.schoolnotes4u.com

(Answers at the end of all questions)

- 47) As per Bohr model, the minimum energy (in eV) required to remove an electron from the ground state of doubly ionized Li atom (Z = 3) is
 (a) 1.51
 (b) 13.6
 (c) 40.8
 (d) 122.4
- 48) The K_α X-ray emission line of tungsten occurs at λ = 0.021 nm. The energy difference in K and L levels in this atom is about (a) 0.51 MeV (b) 1.2 MeV (c) 59 keV (d) 13.6 eV [IIT 1997]
- 49) Masses of two isobars 29 Cu⁶⁴ and 30 Zn⁶⁴ are 63.9298 u and 63.9292 u respectively. It can be concluded from this data that (a) both the isobars are stable
 - (b) Zn^{64} is radioactive, decaying to Cu^{64} through β -decay
 - (c) Cu^{64} is radioactive, decaying to Zn^{64} though γ -decay
 - (d) Cu^{64} is radioactive, decaying to Zn^{64} though β -decay [IIT 1997]
- 50) Which of the following statement (s) is (are) correct?
 - (a) The rest mass of a stable nucleus is less than the sum of the rest masses of its separated nucleons.
 - (b) The rest mass of a stable nucleus is greater than the sum of the rest masses of its separated nucleons.
 - (c) In nuclear fusion, energy is released by fusing two nuclei of medium mass (approximately 100 amu).
 - (d) In nuclear fission, energy is released by fragmentation of a very heavy nucleons.

[IIT 1994]

- 51) Fast neutrons can easily be slowed down by
 - (a) the use of lead shielding (b) passing them through water
 - (c) elastic collisions with heavy nuclei (d) applying a strong electric field [IIT 1994]
- 52) Consider α particles, β particles and γ -rays, each having an energy of 0.5 MeV. In increasing order of penetrating powers, the radiations are (a) α , β , γ (b) α , γ , β (c) β , γ , α (d) γ , β , α [IIT 1994]

53) A star initially has 10⁴⁰ deuterons. It produces energy via the following processes: $_1H^2 + _1H^2 \rightarrow _1H^3 + p$ and $_1H^2 + _1H^3 \rightarrow _2He^4 + n$ The masses of the nuclei are as follows: $M(H^2) = 2.014$ amu, M(p) = 1.007 amu, M(n) = 1.008 amu, $M(He^4) = 4.001$ amu If the average power radiated by the star is 10^{16} W, the deuteron supply of the star is exhausted in a time of the order of (a) 10^{16} sec (b) 10^8 sec (c) 10^{12} sec (d) 10^{20} sec [IIT 1993]

- 54) The decay constant of a radioactive sample is $\lambda.$ The half-life and the mean-life of the sample are respectively given by
 - (a) $1/\lambda$ and $ln2/\lambda$ (b) $ln2/\lambda$ and $1/\lambda$
 - (c) $\lambda/\ln 2$ and $1/\lambda$ (d) $\lambda/\ln 2$ and 2λ [IIT 1989]

<u>23 - ATOMS, MOLECULES AND NUCLEI</u> (Answers at the end of all questions)

55)	The potential difference applied to an X-ray radiation	v tube is increased. As a result,	in the emitted
	(a) the intensity increases (c) the intensity remains unchanged	(b) the minimum wavelength i (d) the minimum wavelength o	ncreases lecreases
			[IIT 1988]
56)	A freshly prepared radioactive source of h is 64 times the permissible safe level.	alf life 2 hr emits radiation of i The minimum time after which	ntensity which it would be
	(a) 6 hr (b) 12 hr (c) 24 hr	(d) 128 hr	[IIT 1988]
57)	During a negative beta decay		
	(a) an atomic electron is ejected (b) an electron which is already present	within the nucleus is eiected	
	(c) a neutron in the nucleus decays emit	ting an electron	
	(d) a part of the binding energy of the n	ucleus is converted into an elect	ron [IIT 1987]
58)	Four physical quantities are listed in Colurandom order:	mn I. Their values are listed in	Column II in
	(1) Inermal energy of air molecules at room temperature	(e) 0.02 eV	
	(ii) Binding energy of heavy nuclei per nucleon	(f) 2 eV	
	(iii) X-ray photon energy	(g) 1 KeV	
	(iv) Photon energy of visible light	(h) 7 MeV	
	(a) i.e. ii.e. iii.e. iv.f. (b) i.e.	s given by o ii₋o, iii₋f iv_b	
	(c) i-f. ii-e. iii-g. iv-h (d) i-1	. ii - h. iii - e. iv - a	[T 1987]
	(0), 0, 9, (0)	,, e, g	[]
59)	During a nuclear fusion reaction	manda har ita alf	
	(b) a light nucleus bombarded by therma	nents by itself I neutrons breaks up	
	(c) a heavy nucleus bombarded by therm	al neutrons breaks up	
	(d) two light nuclei combine to give a he	eavier nucleus and possibly other	products
60)	The mass number of a nucleus is		[111 1986]
00)	(a) always less than its atomic number		
	(b) always more than its atomic number		
	(c) sometimes equal to its atomic numbe	r aqual to its atomic number	
	(u) sometimes more than and sometimes	equal to its atomic number	[IIT 1986]
61)	The X-ray beam coming from an X-ray tub (a) monochromatic	e will be	
	(b) having all wavelengths smaller than a	certain maximum wavelength	
	(c) naving all wavelengths larger than a (d) having all wavelengths lying between	certain minimum wavelength a minimum and a maximum way	elenath
	(u) having an wavelengths lying between		[IIT 1985]
62)	If elements with principal quantum number	per n > 4 were not allowed	in nature, the
	number of possible elements would be $(a) 60 (b) 32 (c) 4 (d) (d)$	64	[T 1983]
		. .)
	www.sch	ooinotes4u.com	·

Page 7

<u>23 - ATOMS, MOLECULES AND NUCLEI</u> (Answers at the end of all questions)

63)	From the following equations pick out the possible nuclear fusion reactions	
	(a) ${}_{5}C^{13} + {}_{1}H^{1} \rightarrow {}_{6}C^{14} + 4.3 \text{ MeV}$	
	(b) $_{6}C^{12} + {}_{1}H^{1} \rightarrow {}_{7}N^{13} + 2$ MeV	
	(c) $_7N^{14} + _1H^1 \rightarrow _8O^{15} + 7.3 \text{ MeV}$	
	(d) $_{92}U^{235} + _0n^1 \rightarrow _{34}Xe^{140} + _{38}Sr^{94} + 2_0n^1 + v + 200 MeV$	
64)	In the Bohr model of the hydrogen atom	[IIT 1984]
04)	(a) the radius of the nth orbit is proportional to n ²	
	(b) the total energy of the electron in the nth orbit is inversely proportional	to n
	 (c) the angular momentum of the electron in an orbit is an integral multiple (d) the magnitude of the potential energy of the electron in any orbit is g its kinetic energy 	of $h/2\pi$ greater than
·		[IIT 1984]
65)	Beta rays emitted by a radioactive material are (a) electromagnetic radiations	
	(b) the electrons orbiting around the nucleus	
	(c) charged particles emitted by the nucleus (d) neutral particles	[IIT 1983]
66 \	Consider the expected line resulting from the transition $n = 2$, $n = 1$ in	the stome
00)	and ions given below. The shortest wavelength is produced by	the atoms
	(a) Hydrogen atom (b) Singly ionized Helium	F IIT 1083 1
		[11 1903]
67)	The equation 4 $^{1}_{1}$ H ⁺ \rightarrow $^{4}_{2}$ He ⁺⁺ + 2e + 26 MeV represents	
	(a) β - decay (b) γ - decay (c) fusion (d) fission	[IIT 1983]
68)	The shortest wavelength of X-rays emitted from an X-ray tube depends on (a) the current in the tube (b) the voltage applied to the tube	
	(c) the nature of the gas in the tube (d) the atomic number of the target material	[T 1982]
69)	An alpha particle of energy 5 MeV is scattered through 180° by a fix nucleus. The distance of closest approach is of the order of	ed uranium
	(a) $1 A^{\circ}$ (b) 10^{-10} cm (c) 10^{-12} cm (d) 10^{-15} cm	[IIT 1981]
70)	The half-life of radioactive radon is 3.8 days. The time at the end of which	1 / 20th of
	(a) 3.8 days (b) 16.5 days (c) 33 days (d) 76 days	[IIT 1981]

www.schoolnotes4u.com

<u>23 - ATOMS, MOLECULES AND NUCLEI</u> (Answers at the end of all questions)

<u>Answers</u>

1	2	3	4	5	; (6	7	8	9	10	11	•	12	13	1	4	15	16	17	18	19	20
b	d	b	а	d	(d	С	С	С	С	С		b	С		b	b	а	d	b	С	b
21	22	23	24	25	26	27	28	29	30	31	3	2	33	(*)	34	35	5 3	6	37	38	39	40
С	С	а	d	а	а	d	b	b	а	С		С	d		d	C	1	С	С	d	а	b
41	42	2 4	43	44	45	4	6	47	48	4	9	50)	51	5	52	53	5	4	55	56	57
b	С		a	c,d	a,c	1	d	d	С		d	a,c	k	b	6	a	С	k)	d	b	С
58	5	9	60	61		62	63		64	65	66	67	7 (68	69	70)					
а	C	k	c,d	d		a	b,c	a	,c,d	С	d	С	;	b	С	b)					

